By Topic

A probabilistic nodal loading model and worst case solutions for electric power system voltage stability assessment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kataoka, Y. ; R&D Center, Tokyo Electr. Power Co. Inc., Yokohama, Japan

In this paper, a new nodal loading model for use in voltage stability assessment of electric power systems is proposed, and the formulation of worst cases based on this model, as well as related numerical methods, are described. In this nodal loading model, called the "hyper-cone" model, a set of future operating points in a load parameter space is modeled. That is, the "vertex" of the hyper-cone is taken to be the current operating point, and the "thickness" of the hyper-cone represents the uncertainty of future loading. The worst loading case is the point, among the set of transfer limit points on or within the hyper-cone, at which the total load is smallest. In other words, in terms of the uncertainty of future loading, the worst case corresponds to the most conservative transfer limit. Efficient numerical methods to compute this worst case are shown, and these methods are demonstrated on some sample power systems including IEEE 118-node system.

Published in:

Power Systems, IEEE Transactions on  (Volume:18 ,  Issue: 4 )