By Topic

Cooperative, hybrid agent architecture for real-time traffic signal control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Min Chee Choy ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; Srinivasan, D. ; Cheu, R.L.

This paper presents a new hybrid, synergistic approach in applying computational intelligence concepts to implement a cooperative, hierarchical, multiagent system for real-time traffic signal control of a complex traffic network. The large-scale traffic signal control problem is divided into various subproblems, and each subproblem is handled by an intelligent agent with a fuzzy neural decision-making module. The decisions made by lower-level agents are mediated by their respective higher-level agents. Through adopting a cooperative distributed problem solving approach, coordinated control by the agents is achieved. In order for the multiagent architecture to adapt itself continuously to the dynamically changing problem domain, a multistage online learning process for each agent is implemented involving reinforcement learning, learning rate and weight adjustment as well as dynamic update of fuzzy relations using an evolutionary algorithm. The test bed used for this research is a section of the Central Business District of Singapore. The performance of the proposed multiagent architecture is evaluated against the set of signal plans used by the current real-time adaptive traffic control system. The multiagent architecture produces significant improvements in the conditions of the traffic network, reducing the total mean delay by 40% and total vehicle stoppage time by 50%.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:33 ,  Issue: 5 )