By Topic

A genetic approach for adaptive multiagent control in heterarchical manufacturing systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Maione, G. ; Facolta di Ingegneria, Politecnico di Bari II, Taranto, Italy ; Naso, D.

In this paper, we apply genetic algorithms to adapt the decision strategies of autonomous controllers in a part-driven heterarchical manufacturing system. The control agents use pre-assigned decision rules only for a limited amount of time, and obey a rule replacement policy propagating the most successful rules to the subsequent populations of concurrently operating agents. The twofold objective of this approach is to automatically optimize the performance of the control system during the steady-state unperturbed conditions of the manufacturing floor, and to improve the reactions of the agents to unforeseen disturbances (e.g., failures, shortages of materials) by adapting their decision strategies. Results on a detailed discrete event model of a multiagent heterarchical manufacturing system confirm the effectiveness of the approach.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:33 ,  Issue: 5 )