Cart (Loading....) | Create Account
Close category search window
 

Solving function distribution and behavior design problem for cooperative object handling by multiple mobile robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhidong Wang ; Graduate Sch. of Eng., Tohoku Univ., Sendai, Japan ; Nakano, E. ; Takahashi, T.

This paper addresses the function distribution and behavior design problem for a multirobot system which incorporates a behavior-based dynamic cooperation strategy for object handling. The proposed multiple robot system is composed of a managing robot and homogeneous behavior-based robots. The cooperation strategy in this system is realized in two steps: designing the distributed robot's cooperative behavioral attributes according to the robot's abilities, and organizing these behavioral attributes so that team cooperation is realized. For indicating an incremental style of local behavior construction, an advanced design of cooperative behavior for coping with unknown disturbance is addressed. Additionally, two extended cooperation strategies designed for a path tracking task are described. These three strategies are based on the same concept on performing manipulation in coordination. Therefore, by considering the function distribution among the managing robot and worker robots, and considering behavior design of each worker robot, the proposed system is able to achieve the object handling task with different performances according to the task requirement, such as with or without path tracking and with or without contact with the environment. Experimental results demonstrate the applicability of the proposed system.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:33 ,  Issue: 5 )

Date of Publication:

Sept. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.