By Topic

Well-defined generalized stochastic Petri nets: a net-level method to specify priorities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
E. Teruel ; Departamento de Informatica e Ingenieria de Sistemas, Zaragoza Univ., Spain ; G. Franceschinis ; M. De Pierro

Generalized stochastic Petri nets (GSPN), with immediate transitions, are extensively used to model concurrent systems in a wide range of application domains, particularly including software and hardware aspects of computer systems, and their interactions. These models are typically used for system specification, logical and performance analysis, or automatic code generation. In order to keep modeling separate from the analysis and to gain in efficiency and robustness of the modeling process, the complete specification of the stochastic process underlying a model should be guaranteed at the net level, without requiring the generation and exploration of the state space. In this paper, we propose a net-level method that guides the modeler in the task of defining the priorities (and weights) of immediate transitions in a GSPN model, to deal with confusion and conflict problems. The application of this method ensures well-definition without reducing modeling flexibility or expressiveness.

Published in:

IEEE Transactions on Software Engineering  (Volume:29 ,  Issue: 11 )