By Topic

An efficient technique for nearest-neighbor query processing on the SPY-TEC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dong-Ho Lee ; Dept. of Comput. Eng., Seoul Nat. Univ., South Korea ; Hyoung-Joo Kim

The SPY-TEC (spherical pyramid-technique) was proposed as a new indexing method for high-dimensional data spaces using a special partitioning strategy that divides a d-dimensional data space into 2d spherical pyramids. In the SPY-TEC, an efficient algorithm for processing hyperspherical range queries was introduced with a special partitioning strategy. However, the technique for processing k-nearest-neighbor queries, which are frequently used in similarity search, was not proposed. In this paper, we propose an efficient algorithm for processing nearest-neighbor queries on the SPY-TEC by extending the incremental nearest-neighbor algorithm. We also introduce a metric that can be used to guide an ordered best-first traversal when finding nearest neighbors on the SPY-TEC. Finally, we show that our technique significantly outperforms the related techniques in processing k-nearest-neighbor queries by comparing it to the R*-tree, the X-tree, and the sequential scan through extensive experiments.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:15 ,  Issue: 6 )