Cart (Loading....) | Create Account
Close category search window
 

A logical framework for querying and repairing inconsistent databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Greco, G. ; DEIS Dept., Univ. della Calabria, Rende, Italy ; Greco, S. ; Zumpano, E.

In this paper, we address the problem of managing inconsistent databases, i.e., databases violating integrity constraints. We propose a general logic framework for computing repairs and consistent answers over inconsistent databases. A repair for a possibly inconsistent database is a minimal set of insert and delete operations which makes the database consistent, whereas a consistent answer is a set of tuples derived from the database, satisfying all integrity constraints. In our framework, different types of rules defining general integrity constraints, repair constraints (i.e., rules defining conditions on the insertion or deletion of atoms), and prioritized constraints (i.e., rules defining priorities among updates and repairs) are considered. We propose a technique based on the rewriting of constraints into (prioritized) extended disjunctive rules with two different forms of negation (negation as failure and classical negation). The disjunctive program can be used for two different purposes: to compute "repairs" for the database and produce consistent answers, i.e., a maximal set of atoms which do not violate the constraints. We show that our technique is sound, complete (each preferred stable model defines a repair and each repair is derived from a preferred stable model), and more general than techniques previously proposed.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:15 ,  Issue: 6 )

Date of Publication:

Nov.-Dec. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.