Cart (Loading....) | Create Account
Close category search window
 

Dimensionality reduction in automatic knowledge acquisition: a simple greedy search approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Huang, S.H. ; Dept. of Mech., Ind., & Nucl. Eng., Cincinnati Univ., OH, USA

Knowledge acquisition is the process of collecting domain knowledge, documenting the knowledge, and transforming it into a computerized representation. Due to the difficulties involved in eliciting knowledge from human experts, knowledge acquisition was identified as a bottleneck in the development of knowledge-based system. Over the past decades, a number of automatic knowledge acquisition techniques have been developed. However, the performance of these techniques suffers from the so called curse of dimensionality, i.e., difficulties arise when many irrelevant (or redundant) parameters exist. This paper presents a heuristic approach based on statistics and greedy search for dimensionality reduction to facilitate automatic knowledge acquisition. The approach deals with classification problems. Specifically, Chi-square statistics are used to rank the importance of individual parameters. Then, a backward search procedure is employed to eliminate parameters (less important parameters first) that do not contribute to class separability. The algorithm is very efficient and was found to be effective when applied to a variety of problems with different characteristics.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:15 ,  Issue: 6 )

Date of Publication:

Nov.-Dec. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.