By Topic

Unsatisfying functions and multiobjective fuzzy satisfaction design using genetic algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kiyota, T. ; Dept. of Mech. Syst. & Environ. Eng., Univ. of Kitakyushu, Fukuoka, Japan ; Tsuji, Y. ; Kondo, E.

This paper describes a new fuzzy satisfaction method using genetic algorithms (GA) for multiobjective problems. First, an unsatisfying function, which has a one-to-one correspondence with the membership function, is introduced for expressing "fuzziness". Next, the multiobjective design problem is transformed into a satisfaction problem of constraints by introducing an aspiration level for each objective. Here, in order to handle the fuzziness involved in aspiration levels and constraints, the unsatisfying function is used, and the problem is formulated as a multiobjective minimization problem of unsatisfaction ratings. Then, a GA is employed to solve the problem, and a new strategy is proposed to obtain a group of Pareto-optimal solutions in which the decision maker (DM) is interested. The DM can then seek a satisfaction solution by modifying parameters interactively according to preferences.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:33 ,  Issue: 6 )