By Topic

Performance of mutual information similarity measure for registration of multitemporal remote sensing images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hua-Mei Chen ; Dept. of Comput. Sci. & Eng., Texas Univ., Arlington, TX, USA ; Varshney, P.K. ; Arora, M.K.

Accurate registration of multitemporal remote sensing images is essential for various change detection applications. Mutual information has recently been used as a similarity measure for registration of medical images because of its generality and high accuracy. Its application in remote sensing is relatively new. There are a number of algorithms for the estimation of joint histograms to compute mutual information, but they may suffer from interpolation-induced artifacts under certain conditions. In this paper, we investigate the use of a new joint histogram estimation algorithm called generalized partial volume estimation (GPVE) for computing mutual information to register multitemporal remote sensing images. The experimental results show that higher order GPVE algorithms have the ability to significantly reduce interpolation-induced artifacts. In addition, mutual-information-based image registration performed using the GPVE algorithm produces better registration consistency than the other two popular similarity measures, namely, mean squared difference (MSD) and normalized cross correlation (NCC), used for the registration of multitemporal remote sensing images.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:41 ,  Issue: 11 )