By Topic

Control of LTI systems subject to unanticipated extreme perturbations using self-tuning 3-term switching controllers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chang, M.H. ; Panasonic MKA USDC, Fremont, CA, USA ; Davison, E.J.

In the design of conventional control systems for a multivariable system, using robust/adaptive control techniques, the motivation is to design a controller which "works satisfactorily" in the presence of plant uncertainty. Unfortunately, however, if large unanticipated structural changes subsequently occur in the system, severe limitations in practical performance may occur, since such conventional control schemes usually do not have the ability to control systems which are subject to unplanned extreme changes. Moreover, for the realistic situation when control input constraints exist, few results for continuous time multivariable systems are available. In this paper, a new class of self-tuning proportional-integral-derivative switching controllers, which is an extension of the self-tuning integral controller of Miller and Davison, is described, and has the property that it is robust to unplanned extreme changes in the plant and satisfies any feasible control signal input constraints. Results of this self-tuning controller when applied to an experimental multivariable system also are described.

Published in:

Automatic Control, IEEE Transactions on  (Volume:48 ,  Issue: 11 )