By Topic

Failure-detecting arithmetic convolutional codes and an iterative correcting strategy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Redinbo, G.Robert ; Dept. of Electr. & Comput. Eng., California Univ., Davis, CA, USA

Errors due to failures in data processing algorithms may be detected and even corrected by employing systematic convolutional codes defined over the fixed-point arithmetic structures supporting the computations. A new class of arithmetic convolutional codes using symbols from the finite ring associated with normal signed arithmetic is based on binary burst-correcting codes and a code's performance in the larger context exceeds that of an underlying basis code. When failures satisfy the usual guard band requirements for the binary code, error correction is possible using an iterative feedback decoder processing syndromes that are defined over the integers modulo a power of two. A class of high rate burst-correcting codes is discussed in more detail and their properties guarantee the detection of the onset of errors. The corrector also contains failure error-detecting capabilities.

Published in:

Computers, IEEE Transactions on  (Volume:52 ,  Issue: 11 )