Cart (Loading....) | Create Account
Close category search window
 

CMOS VLSI implementation of a low-power logarithmic converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abed, K.H. ; Dept. of Electr. Eng., Wright State Univ., Dayton, OH, USA ; Siferd, R.E.

We present a unique 32-bit binary-to-binary logarithm converter including its CMOS VLSI implementation. The converter is implemented using combinational logic only and it calculates a logarithm approximation in a single clock cycle. Unlike other complex logarithm correcting algorithms, three unique algorithms are developed and implemented with low-power and fast circuits that reduce the maximum percent errors that result from binary-to-binary logarithm conversion to 0.9299 percent, 0.4314 percent, and 0.1538 percent. Fast 4, 16, and 32-bit leading-one detector circuits are designed to obtain the leading-one position of an input binary word. A 32-word×5-bit MOS ROM is used to provide 5-bit integers based on the corresponding leading-one position. Both converter area and speed have been considered in the design approach, resulting in the use of a very efficient 32-bit logarithmic shifter in the 32-bit logarithmic converter. The converter is implemented using 0.6μm CMOS technology, and it requires 1,600λ×2,800λ of chip area. Simulations of the CMOS design for the 32-bit logarithmic converter, operating at VDD equal to 5 volts, run at 55 MHz, and the converter consumes 20 milliwatts.

Published in:

Computers, IEEE Transactions on  (Volume:52 ,  Issue: 11 )

Date of Publication:

Nov. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.