By Topic

Theoretical calculations and performance results of a PZT thin film actuator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
M. Hoffmann ; Electroceramic Mater. Res. Labs., RWTH, Aachen, Germany ; H. Kuppers ; T. Schneller ; U. Bottger
more authors

High piezoelectric coupling coefficients of PZT-based material systems can be employed for actuator functions in micro-electro-mechanical systems (MEMS) offering displacements and forces which outperform standard solutions. This paper presents simulation, fabrication, and development results of a stress-compensated, PZT-coated cantilever concept in which a silicon bulk micromachining process is used in combination with a chemical solution deposition (CSD) technique. Due to an analytical approach and a finite element method (FEM) simulation for a tip displacement of 10 /spl mu/m, the actuator was designed with a cantilever length of 300 /spl mu/m to 1000 /spl mu/m. Special attention was given to the Zr/Ti ratio of the PZT thin films to obtain a high piezoelectric coefficient. For first characterizations X-ray diffraction (XRD), scanning electron microscopy (SEM), hysteresis-, current-voltage I(V)and capacitance-voltage C(V)-measurements were carried out.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:50 ,  Issue: 10 )