By Topic

Finite-state modulation codes for data storage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Marcus, B.H. ; IBM Res. Div., Almaden Res. Center, San Jose, CA, USA ; Siegel, P.H. ; Wolf, J.K.

The authors provide a self-contained exposition of modulation code design methods based upon the state splitting algorithm. They review the necessary background on finite state transition diagrams, constrained systems, and Shannon (1948) capacity. The state splitting algorithm for constructing finite state encoders is presented and summarized in a step-by-step fashion. These encoders automatically have state-dependent decoders. It is shown that for the class of finite-type constrained systems, the encoders constructed can be made to have sliding-block decoders. The authors consider practical techniques for reducing the number of encoder states as well as the size of the sliding-block decoder window. They discuss the class of almost-finite-type systems and state the general results which yield noncatastrophic encoders. The techniques are applied to the design of several codes of interest in digital data recording

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:10 ,  Issue: 1 )