By Topic

Real-time path planning in dynamic environments: a comparison of three neural network models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. V. Lebedev ; Fac. of Technol., Bielefeld Univ., Germany ; J. J. Steil ; H. Ritter

This paper presents two contributions: (i) a new type of neural network the dynamic wave expansion neural network, for path generation in a dynamic environment for both mobile robots and robotic manipulators, and (ii) the simulative comparisons to known discrete-time neural network models - the classical resistive grid model, and the Hopfield-type neural network, proposed by Glasius et al. The network has discrete-time dynamics, is locally connected, highly parallel, and hence, computationally efficient. The model does not require any a-priory information about the environment. The path is generated according to a neural-activity landscape, which forms a dynamically updating scalar potential field over a distributed representation of the configuration space of a robot. The simulations reveal that the proposed model yields dominantly shorter paths, especially in highly-dynamic environments.

Published in:

Systems, Man and Cybernetics, 2003. IEEE International Conference on  (Volume:4 )

Date of Conference:

5-8 Oct. 2003