By Topic

0.8 μm CMOS implementation of weighted-order statistic image filter based on cellular neural network architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kowalski, J. ; Inst. of Electron., Tech. Univ. of Lodz, Poland

In this paper, a very large scale integration chip of an analog image weighted-order statistic (WOS) filter based on cellular neural network (CNN) architecture for real-time applications is described. The chip has been implemented in CMOS AMS 0.8 μm technology. CNN-based filter consists of feedforward nonlinear template B operating within the window of 3 × 3 pixels around the central pixel being filtered. The feedforward nonlinear CNN coefficients have been realized using programmable nonlinear coupler circuits. The WOS filter chip allows for processing of images with 300 pixels horizontal resolution. The resolution can be increased by cascading of the chips. Experimental results of basic circuit building blocks measurements are presented. Functional tests of the chip have been performed using a special test setup for PAL composite video signal processing. Using the setup real images have been filtered by WOS filter chip under test.

Published in:

Neural Networks, IEEE Transactions on  (Volume:14 ,  Issue: 5 )