By Topic

Performance evaluation of a Schottky SiC power diode in a boost PFC application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
G. Spiazzi ; Dept. of Inf. Eng., Univ. of Padova, Italy ; S. Buso ; M. Citron ; M. Corradin
more authors

The performance of a 600 V, 4 A silicon carbide (SiC) Schottky diode (Infineon SDP04S60) is experimentally evaluated. A 300 W boost power factor corrector (PFC) with average current mode control is considered as a key application. Measurements of overall efficiency, switch and diode losses, and conducted electromagnetic interference (EMI) are performed both with the SiC diode and with two ultra-fast, soft-recovery, silicon power diodes, namely the RURD460 and the presented STTH5R06D. The paper compares the results to quantify the impact of the recovery current reduction provided by SiC diode on these key aspects of the converter behavior. Based on the experimental results, the paper shows that the use of SiC diodes in PFC designs may only be justified in high switching frequency applications.

Published in:

IEEE Transactions on Power Electronics  (Volume:18 ,  Issue: 6 )