By Topic

V-band HJFET MMIC DROs with low phase noise, high power, and excellent temperature stability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
K. Hosoya ; Photonic & Wireless Devices Res. Labs., NEC Corp., Ibaraki, Japan ; K. Ohata ; M. Funabashi ; T. Inoue
more authors

This paper describes the development, along with detailed phase-noise analysis, of V-band monolithic-microwave integrated-circuit (MMIC) dielectric-resonator oscillators (DROs) achieving state-of-the-art performances. A TE01δ-mode Ba(Mg,Ta)O3 cylindrical dielectric resonator (DR) is directly placed on a MMIC GaAs substrate to avoid the loss and uncertainty of bonding wires. A 0.15-μm AlGaAs-InGaAs heterojunction field-effect transistor with optimized structure is developed as an active device. A design procedure proposed by the authors is employed, which allows us to analyze and optimize circuits in consideration for the output power, phase noise, and temperature stability. A developed DRO co-integrated with a buffer amplifier exhibits a low phase noise of -90 dBc/Hz at 100-kHz offset, a high output power of 10.0 dBm, and an excellent frequency stability of 1.6 ppm/°C at an oscillation frequency of 59.6 GHz, all of which are state-of-the-art performances reported for MMIC DROs above V-band. An experimental and theoretical analysis for the phase-noise-reduction effect of a DR is also addressed.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:51 ,  Issue: 11 )