By Topic

A first multigigahertz digitally controlled oscillator for wireless applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Staszewski, R.B. ; Texas Instrum. Inc., Dallas, TX, USA ; Chih-Ming Hung ; Leipold, D. ; Balsara, P.T.

A novel digitally controlled oscillator (DCO) architecture for multigigahertz wireless RF applications, such as short-range wireless connectivity or cellular phones, is proposed and demonstrated. It deliberately avoids any use of an analog tuning voltage control line. Fine frequency resolution is achieved through high-speed dithering, yet the resulting spurious tones are very low. This enables to employ fully digital frequency synthesizers in the most advanced deep-submicrometer digital CMOS processes, which allow almost no analog extensions. It promotes cost-effective integration with the digital back-end onto a single silicon die. The demonstrator test chip has been fabricated in a digital 0.13 μm CMOS process together with a digital signal processor to investigate noise coupling. The 2.4 GHz DCO core consumes 2.3 mA from a 1.5 V supply and has a very large tuning range of 500 MHz. The phase noise is -112 dBc/Hz at 500 kHz offset. The presented ideas have been incorporated in a commercial Bluetooth transceiver.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:51 ,  Issue: 11 )
RFIC Virtual Journal, IEEE