By Topic

Dynamic bandwidth allocation for quality-of-service over Ethernet PONs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Assi, C.M. ; Inf. Syst. Eng. Dept., Concordia Univ., Montreal, Canada ; Yinghua Ye ; Dixit, S. ; Ali, M.A.

Ethernet-based passive optical network (EPON) technology is being considered as a promising solution for next-generation broadband access networks due to the convergence of low-cost Ethernet equipment and low-cost fiber infrastructures. A major feature for this new architecture is the use of a shared transmission media between all users; hence, medium access control arbitration mechanisms are essential for the successful implementation of EPON: i.e., to ensure a contention-free transmission and provide end users with equal access to the shared media. We propose to use the multipoint control protocol defined by the IEEE 802.3ah task force to arbitrate the transmission of different users, and we present different dynamic bandwidth allocation (DBA) algorithms to allocate bandwidths effectively and fairly between end users. These DBA algorithms are also augmented to support differentiated services, a crucial requirement for a converged broadband access network with heterogeneous traffic. We show that queueing delays under strict bandwidth allocation algorithms result in an unexpected behavior for certain traffic classes, and we suggest the use of DBA with appropriate local queue management to alleviate this inappropriate behavior. We conduct detailed simulation experiments to study the performance and validate the effectiveness of the proposed protocols.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:21 ,  Issue: 9 )