By Topic

Learning to optimize mobile robot navigation based on HTN plans

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Belker, T. ; Dept. of Comput. Sci., Bonn Univ., Germany ; Hammel, M. ; Hertzberg, J.

High-level symbolic representations of actions to control the working of autonomous robots are used in all hybrid (reactive and deliberative) robot control architectures. Abstract action representations serve several purposes, such as structuring the control code, optimizing the robot performance, and providing a basis for reasoning about future robot action. The paper presents results about re-designing the RHINO navigation system by introducing an HTN plan layer. Besides yielding a more structured robot control software, this layer is used as a basis for optimizing the navigation performance by plan transformations. We show how a robot can learn to select plan transformations based on projections of its intended behavior. Our experimental evaluation shows that the overall robot navigation performance is increased by almost 42 % when using learned projective models to select plan transformations.

Published in:

Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on  (Volume:3 )

Date of Conference:

14-19 Sept. 2003