By Topic

Classification of multispectral remote sensing data using a back-propagation neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Heermann, P.D. ; Dept. of Mech. Eng., Texas Univ., Austin, TX, USA ; Khazenie, N.

The suitability of a back-propagation neural network for classification of multispectral image data is explored. A methodology is developed for selection of both training parameters and data sets for the training phase. A new technique is also developed to accelerate the learning phase. To benchmark the network, the results are compared to those obtained using three other algorithms: a statistical contextual technique, a supervised piecewise linear classifier, and an unsupervised multispectral clustering algorithm. All three techniques were applied to simulated and real satellite imagery. Results from the classification of both Monte Carlo simulation and real imagery are summarized

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:30 ,  Issue: 1 )