By Topic

Robust modeling of dynamic environment based on robot embodiment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
K. Noda ; Humanoid Robotics Inst., Waseda Univ., Tokyo, Japan ; M. Suzuki ; N. Tsuchiya ; Y. Suga
more authors

Recent studies on embodied cognitive science have shown us the possibility of emergence of more complex and nontrivial behaviors with quite simple designs if the designer takes the dynamics of the system-environment interaction into account properly. In this paper, we report our tentative classification experiments of several objects using the human-like autonomous robot, "WAMOEBA-2Ri". As modeling the environment, we focus on not only static aspects of the environment but also dynamic aspects of it including that of the system own. The visualized result of this experiment shows the integration of multimodal sensor dataset acquired by the system-environment interaction ("grasping") enable robust categorization of several objects. Finally, in discussion, we demonstrate a possible application to making "invariance in motion" emerge consequently by extending this approach.

Published in:

Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on  (Volume:3 )

Date of Conference:

14-19 Sept. 2003