By Topic

Microrobotics using composite materials: the micromechanical flying insect thorax

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
R. J. Wood ; Dept. of EECS, California Univ., Berkeley, CA, USA ; S. Avadhanula ; M. Menon ; R. S. Fearing

The use of high performance composite materials provides a substantial performance improvement for microrobotics. Such materials have great benefits over common MEMs materials such as better fracture toughness and fatigue properties than semiconductors, and higher stiffness to weight ratios than most metals. Composite structures yield remarkable improvements in microrobotic links and joints, as well as greater performance actuators while allowing complicated microrobotic mechanisms to be easily rapid prototyped. The use of such materials in the construction of the 4DOF, 26 joint Micromechanical Flying Insect has reduced the thorax inertia by a factor of 3 and given a 20% increase in resonant frequency over previous designs while cutting construction time from weeks to days.

Published in:

Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on  (Volume:2 )

Date of Conference:

14-19 Sept. 2003