By Topic

The dynamic modeling and analysis for an omnidirectional mobile robot with three caster wheels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jae Heon Chung ; Sch. of Electr. & Comput. Sci., Hanyang Univ., Ansan, South Korea ; Byung-Ju Yi ; Whee Kuk Kim ; Hogil Lee

Recently quite a few applications of an omnidirectional mobile robot have been reported. However, understanding some fundamental issues still remains as further study. One of the issues is the exact dynamic model. Previous studies very often ignore the wheel dynamics of the mobile robot and suffer from algorithmic singularity. Thus, actuator sizing or control algorithms based on the incomplete plant model does not guarantee the control performance of the system. This paper deals with the singularity-free, exact dynamic modeling and analysis of an omnidirectional mobile robot with three caster wheels. Initially, the exact dynamic model of the mobile robot including the wheel dynamics is introduced. A natural orthogonal complement approach is also introduced. The joint-space and operational-space dynamic models are derived as analytical forms. Through simulation, the discrepancy of the incomplete dynamic model is shown by comparison with the exact dynamic model. Furthermore, the useful aspect of operational dynamics in terms of impact geometry is also discussed.

Published in:

Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on  (Volume:1 )

Date of Conference:

14-19 Sept. 2003