Cart (Loading....) | Create Account
Close category search window
 

On the suitability of non-hardened high density SRAMs for space applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Koga, R. ; Space & Environment Technol. Center, Aerospace Corp., El Segundo, CA, USA ; Crain, W.R. ; Crawford, K.B. ; Lau, D.D.
more authors

Several non-radiation-hardened high-density static RAMs (SRAMs) were tested for susceptibility to single event upset (SEU) and latchup. Test results indicate that at present only a few such device types are suitable for use in space applications. Several additional factors such as susceptibility to multiple-bit upsets and to radiation induced permanent damage need to be taken into consideration before these device types can be recommended. One nonhardened SRAM device type has recently been used on a low-Earth-orbit satellite, enabling the upset rate measured in space to be compared to that predicted from ground-based testing

Published in:

Nuclear Science, IEEE Transactions on  (Volume:38 ,  Issue: 6 )

Date of Publication:

Dec 1991

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.