Cart (Loading....) | Create Account
Close category search window

Helical CT reconstruction from wide cone-beam angle data using ART

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Carvalho, B.M. ; Doctral Program in Comput. Sci., City Univ. of New York, NY, USA ; Herman, G.T.

We report on new results on the use of algebraic reconstruction techniques (ART) for reconstructing from helical cone-beam computerized tomography (CT) data. We investigate two variants of ART for this task: a standard one that considers a single ray in an iterative step and a block version which groups several cone-beam projections when calculating an iterative step. Both algorithms were implemented using modified Kaiser-Bessel window functions, also known as blobs, placed on the body-centered cubic (bcc) grid. The algorithms were used to reconstruct a modified 3D Shepp-Logan phantom from data collected for the PI-geometry for two different maximum cone-beam angles (±9.46° and ±18.43°). Both scattering and quantum noise (for three different noise levels) were introduced to create noisy projections. The results presented here (for both noiseless and noisy data sets) point to the fact that, as opposed to filtered backprojection algorithms, the quality of the reconstructions produced by the ART methods does not suffer from the increase in the cone-beam angle.

Published in:

Computer Graphics and Image Processing, 2003. SIBGRAPI 2003. XVI Brazilian Symposium on

Date of Conference:

12-15 Oct. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.