By Topic

An efficient VLIW DSP architecture for baseband processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tay-Jyi Lin ; Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Chin-Chi Chang ; Chen-Chia Lee ; Chein-Wei Jen

The VLIW processors with static instruction scheduling and thus deterministic execution times are very suitable for high-performance real-time DSP applications. But the two major weaknesses in VLIW processors prevent the integration of more functional units (FU)for a higher instruction issuing rate & the dramatically growing complexity in the register file (RF), and the poor code density. We propose a novel ring-structure RF, which partitions the centralized RF into 2N subblocks with an explicit N-by-N switch network for N FU. Each subblock only requires access ports for a single FU. We also propose the hierarchical VLIW encoding with variable-length RISC-like instructions and NOP removal. The ring-structure RF saves 91.88% silicon area and reduces 77.35% access time of the centralized RF. Our simulation results show that the proposed instruction set architecture with the exposed ring-structure RF has comparable performance with the state-of-the-art DSP processors. Moreover, the hierarchical VLIW encoding can save 32%∼50% code sizes.

Published in:

Computer Design, 2003. Proceedings. 21st International Conference on

Date of Conference:

13-15 Oct. 2003