By Topic

Design of resonant global clock distributions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chan, S.C. ; Dept. of Electr. Eng., Columbia Univ., New York, NY, USA ; Shepard, Kenneth L. ; Restle, P.J.

We present a new approach to global clock distribution in which traditional tree-driven grids are augmented with on-chip inductors to resonate the clock capacitance at the fundamental frequency of the clock node. Rather than being dissipated as heat, the energy of the fundamental resonates between electric and magnetic forms. The clock drivers must only provide the energy necessary to overcome losses. As a result, power reduction of over 80% is possible depending on the Q of the resonant system. Clock latency is also improved because the effective capacitance of the grid is lower, and fewer buffer stages are necessary to drive the grid. Skew and jitter reductions come about because of this reduced buffer latency.

Published in:

Computer Design, 2003. Proceedings. 21st International Conference on

Date of Conference:

13-15 Oct. 2003