By Topic

Symbolic failure analysis of custom circuits due to excessive leakage current

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Song, H.-Y. ; Div. of Eng., Brown Univ., Providence, RI, USA ; Bohidar, S. ; Bahar, R.I. ; Grodstein, J.

As process geometries shrink, leakage current is becoming an increasingly critical problem, especially in full-custom circuit designs. Excessive leakage may cause functional failure at some or all operating conditions. Traditional circuit analysis techniques may be used to verify if leakage currents are within allowable limits so as not to cause functional failures; however, unless the analysis takes into account specific input constraints for the circuit, the results may be overly pessimistic. We approach this noise analysis problem symbolically using algebraic decision diagrams (ADDs). Using ADDs allows us to efficiently analyze leakage within a channel-connected region (CCR) as a function of its inputs. Exclusivity constraints are easily included in the analysis, thus allowing for more accurate (and less pessimistic) results. Our approach is general and can be applied to any arbitrary circuit structure, including a mesh. The effectiveness of our approach is demonstrated on circuits from industry used in Alpha 21264 and 21364 instead of the usual ISCAS benchmarks. We show that such an analysis can lead to up to a 90% difference in worst case voltage drop. This difference can translate into significant savings in manpower by avoiding the need to verify many unrealizable worst-case conditions with other, more costly, simulation techniques.

Published in:

Computer Design, 2003. Proceedings. 21st International Conference on

Date of Conference:

13-15 Oct. 2003