By Topic

Extraction of 3D hand shape and posture from image sequences for sign language recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fillbrandt, H. ; Aachen Univ., Germany ; Akyol, S. ; Kraiss, K.-F.

We propose a novel method for extracting natural hand parameters from monocular image sequences. The purpose is to improve a vision-based sign language recognition system by providing detail information about the finger constellation and the 3D hand posture. Therefore, the hand is modelled by a set of 2D appearance models, each representing a limited variation range of 3D hand shape and posture. The single models are linked to each other according to the natural neighbourhood of the corresponding hand status. During an image sequence, necessary model transitions are executed towards one of the current neighbour models. The natural hand parameters are calculated from the shape and texture parameters of the current model, using a relation estimated by linear regression. The method is robust against large differences between subsequent frames and also against poor image quality. It can be implemented in real-time and offers good properties to handle occlusion and partly missing image information.

Published in:

Analysis and Modeling of Faces and Gestures, 2003. AMFG 2003. IEEE International Workshop on

Date of Conference:

17 Oct. 2003