By Topic

Illumination modeling and normalization for face recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Haitao Wang ; Inst. of Autom., Chinese Acad. of Sci., Beijing, China ; Li, S.Z. ; Yangsheng Wang ; Weiwei Zhang

We present a general framework for face modeling under varying lighting conditions. First, we show that a face lighting subspace can be constructed based on three or more training face images illuminated by noncoplanar lights. The lighting of any face image can be represented as a point in this subspace. Second, we show that the extreme rays, i.e. the boundary of an illumination cone, cover the entire light sphere. Therefore, a relatively sparsely sampled face images can be used to build a face model instead of calculating each extremely illuminated face image. Third, we present a face normalization algorithm, illumination alignment, i.e. changing the lighting of one face image to that of another face image. Experiments are presented.

Published in:

Analysis and Modeling of Faces and Gestures, 2003. AMFG 2003. IEEE International Workshop on

Date of Conference:

17 Oct. 2003