By Topic

Using similarity scores from a small gallery to estimate recognition performance for larger galleries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Y. Johnson ; Coll. of Comput., Georgia Tech., Atlanta, GA, USA ; J. Sun ; A. F. Bobick

We present a method to estimate recognition performance for large galleries of individuals using data from a significantly smaller gallery. This is achieved by mathematically modelling a cumulative match characteristic (CMC) curve. The similarity scores of the smaller gallery are used to estimate the parameters of the model. After the parameters are estimated, the rank 1 point of the modelled CMC curve is used as our measure of recognition performance. The rank 1 point (i.e.; nearest-neighbor) represents the probability of correctly identifying an individual from a gallery of a particular size; however, as gallery size increases, the rank 1 performance decays. Our model, without making any assumptions about the gallery distribution, replicates this effect, and allows us to estimate recognition performance as gallery size increases without needing to physically add more individuals to the gallery. This model is evaluated on face recognition techniques using a set of faces from the FERET database.

Published in:

Analysis and Modeling of Faces and Gestures, 2003. AMFG 2003. IEEE International Workshop on

Date of Conference:

17 Oct. 2003