By Topic

Derivation of passage-time densities in PEPA models using ipc: the imperial PEPA compiler

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bradley, J.T. ; Dept. of Comput., Imperial Coll. of London, UK ; Dingle, N.J. ; Gilmore, S.T. ; Knottenbelt, W.J.

A technique for defining and extracting passage-time densities from high-level stochastic process algebra models is presented. Our high-level formalism is PEPA, a popular Markovian process algebra for expressing compositional performance models. We introduce ipc, a tool which can process PEPA-specified passage-time densities and models by compiling the PEPA model and passage specification into the DNAmaca formalism. DNAmaca is an established modelling language for the low-level specification of very large Markov and semiMarkov chains. We provide performance results for ipc/DNAmaca and comparisons with another tool which supports PEPA, PRISM. Finally, we generate passage-time densities and quantiles for a case study of a high-availability Web server.

Published in:

Modeling, Analysis and Simulation of Computer Telecommunications Systems, 2003. MASCOTS 2003. 11th IEEE/ACM International Symposium on

Date of Conference:

12-15 Oct. 2003