By Topic

Enhanced, robust genetic algorithms for multiview range image registration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
L. Silva ; CPGEI, Centro Fed. de Educ. Tecnol. do Parana, Curitiba, Brazil ; O. R. P. Bellon ; K. L. Boyer

We present a new method for precise registration of multiple range images with low overlap based on genetic algorithms (GAs). The proposed method minimizes the alignment error within the common overlap area among a set of views, which is computed by a novel robust evaluation metric, called the surface interpenetration measure. Because they search in a space of transformations, GAs are capable of registering surfaces without need for prealignment, as opposed to methods based on the iterative closest point (ICP) algorithm, the most popular to date. The experimental results confirm that the new method ensures more precise alignments than combined sequential pairwise alignments for multiview registration, providing accurate global alignment among overlapping views.

Published in:

3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings. Fourth International Conference on

Date of Conference:

6-10 Oct. 2003