By Topic

Deformable model with adaptive mesh and automated topology changes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lachaud, J.-O. ; Lab. Bordelais de Recherche en Informatique, Talence, France ; Taton, B.

Due to their general and robust formulation deformable models offer a very appealing approach to 3D image segmentation. However there is a trade-off between model genericity, model accuracy and computational efficiency. In general, fully generic models require a uniform sampling of either the space or their mesh. The segmentation accuracy is thus a global parameter. Recovering small image features results in heavy computational costs whereas generally only restricted parts of images require a high segmentation accuracy. We present a highly deformable model that both handles fully automated topology changes and adapts its resolution locally according to the geometry of image features. The main idea is to replace the Euclidean metric with a Riemannian metric that expands interesting parts of the image. Then, a regular sampling is maintained with this new metric. This allows to automatically handle topology changes while increasing the model resolution locally according to the geometry of image components. By this way high quality segmentation is achieved with reduced computational costs.

Published in:

3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings. Fourth International Conference on

Date of Conference:

6-10 Oct. 2003