Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Charge control of parallel-plate, electrostatic actuators and the tip-in instability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Seeger, J.I. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California, Berkeley, CA, USA ; Boser, B.E.

Controlling the charge, rather than the voltage, on a parallel-plate, electrostatic actuator theoretically permits stable operation for all deflections. Practically, we show that, using charge control, the maximum stable deflection is limited by 1) charge pull-in, in which the actuator snaps due to the presence of parasitic capacitance and 2) tip-in, in which the rotation mode becomes unstable. This work presents a circuit that controls the amount of charge on a parallel-plate, electrostatic actuator. This circuit reduces the sensitivity to parasitic capacitance, so that tip-in is the limiting instability. A small-signal model of the actuator is developed and used to determine the circuit bandwidth and gain requirements for stable deflections. Four different parallel-plate actuators have been designed and tested to verify the charge control technique as well as to verify charge pull-in, tip-in, and the bandwidth requirements. One design travels 83% of the gap before tip-in. Another design can only travel 20% of the gap before tip-in, regardless of whether voltage control or charge control is used.

Published in:

Microelectromechanical Systems, Journal of  (Volume:12 ,  Issue: 5 )