Cart (Loading....) | Create Account
Close category search window

Hidden Markov measure field models for image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Marroquin, J.L. ; Center for Res. in Math., Guanajuato, Mexico ; Santana, E.A. ; Botello, S.

Parametric image segmentation consists of finding a label field that defines a partition of an image into a set of nonoverlapping regions and the parameters of the models that describe the variation of some property within each region. A new Bayesian formulation for the solution of this problem is presented, based on the key idea of using a doubly stochastic prior model for the label field, which allows one to find exact optimal estimators for both this field and the model parameters by the minimization of a differentiable function. An efficient minimization algorithm and comparisons with existing methods on synthetic images are presented, as well as examples of realistic applications to the segmentation of Magnetic Resonance volumes and to motion segmentation.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 11 )

Date of Publication:

Nov. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.