By Topic

Image analysis by Krawtchouk moments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pew-Thian Yap ; Dept. of Electr. Eng., Univ. of Malaya, Kuala Lumpur, Malaysia ; Paramesran, R. ; Seng-Huat Ong

A new set of orthogonal moments based on the discrete classical Krawtchouk polynomials is introduced. The Krawtchouk polynomials are scaled to ensure numerical stability, thus creating a set of weighted Krawtchouk polynomials. The set of proposed Krawtchouk moments is then derived from the weighted Krawtchouk polynomials. The orthogonality of the proposed moments ensures minimal information redundancy. No numerical approximation is involved in deriving the moments, since the weighted Krawtchouk polynomials are discrete. These properties make the Krawtchouk moments well suited as pattern features in the analysis of two-dimensional images. It is shown that the Krawtchouk moments can be employed to extract local features of an image, unlike other orthogonal moments, which generally capture the global features. The computational aspects of the moments using the recursive and symmetry properties are discussed. The theoretical framework is validated by an experiment on image reconstruction using Krawtchouk moments and the results are compared to that of Zernike, pseudo-Zernike, Legendre, and Tchebyscheff moments. Krawtchouk moment invariants are constructed using a linear combination of geometric moment invariants; an object recognition experiment shows Krawtchouk moment invariants perform significantly better than Hu's moment invariants in both noise-free and noisy conditions.

Published in:

Image Processing, IEEE Transactions on  (Volume:12 ,  Issue: 11 )