By Topic

Anti-geometric diffusion for adaptive thresholding and fast segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Manay, S. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol. Atlanta, GA, USA ; Yezzi, A.

We utilize an anisotropic diffusion model, which we call the anti-geometric heat flow, for adaptive thresholding of bimodal images and for segmentation of more general greyscale images. In a departure from most anisotropic diffusion techniques, we select the local diffusion direction that smears edges in the image rather than seeking to preserve them. In this manner, we are able rapidly to detect and discriminate between entire image regions that lie near, but on opposite sides of, a prominent edge. The detection of such regions occurs during the diffusion process rather than afterward, thereby side-stepping the most notorious problem associated with diffusion methods, namely, when diffusion should stop. We initially outline a procedure for adaptive thresholding, but ultimately show how this model may be used in a region splitting procedure which, when combined with energy based region merging procedures, provides a general framework for image segmentation. We discuss a fast implementation of one such framework and demonstrate its effectiveness in segmenting medical, military, and scene imagery.

Published in:

Image Processing, IEEE Transactions on  (Volume:12 ,  Issue: 11 )