Cart (Loading....) | Create Account
Close category search window
 

An application-level synthesis methodology for multidimensional embedded processing systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alippi, C. ; Dipt. Elettronica a Informazione, Politecnico di Milano, Italy ; Galbusera, A. ; Stellini, M.

The implementation of multidimensional systems in embedded devices is a major design challenge due to the high algorithmic complexity of the applications. The authors suggest a novel application-level synthesis methodology for those parts of the embedded application which are characterized by being Lebesgue measurable (the computation involved in signal and image processing systems is Lebesgue measurable). The synthesis methodology, based on perturbation analysis, supports the design of analog, digital, or mixed implementations at the very high level of the system design cycle. The outputs of the methodology are quantitative indications regarding the maximum performance loss tolerable by the subsystems composing the application. Such information, augmented with a stochastic description of the tolerated perturbations, can be related to lower synthesis levels and guide the designer toward the final implementation of the embedded device. The perturbation analysis is based on randomized algorithms for an effective evaluation of the performance loss of the computational flow once affected by behavioral perturbations and a Tabu-search-inspired optimizing algorithm for distributing the tolerable performance loss at the system output along the computational subsystems composing the possibly multidimensional processing.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:22 ,  Issue: 11 )

Date of Publication:

Nov. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.