By Topic

Nanoelectromechanical quantum circuits and systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

This paper introduces the novel field of nanoelectromechanical quantum circuits and systems. The field derives from exploiting progress in techniques for fabricating, down to nanometer-length scales, freestanding device structures that incorporate mechanical motion and that may be designed to perform a variety of functions, such as optical, electrical, and, in particular, mechanical and mixed domain. The ability to create these nanomechanical structures, in turn, brings within our reach a tremendous possibility for both creating superior implementations of conventional circuits and systems, as well as entirely new ones. Since novel quantum mechanical effects, for instance, quantized heat flow, manifestation of charge discreteness, and the quantum electrodynamical Casimir effect, become operative in this regime, exciting new paradigms for circuit modeling and design must be invoked in order to fully exploit the potential of this technology in sensing, computation, and signal processing applications.

Published in:

Proceedings of the IEEE  (Volume:91 ,  Issue: 11 )