By Topic

Variable optical buffer using slow light in semiconductor nanostructures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chang-Hasnain, C.J. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California, Berkeley, CA, USA ; Pei-Cheng Ku ; Jungho Kim ; Chuang, Shun-Lien

A compact variable all-optical buffer using semiconductor quantum dot (QD) structures is proposed and analyzed. The buffering effect is achieved by slowing down the optical signal using an external control light source to vary the dispersion characteristic of the medium via an electromagnetically induced transparency effect. We present a theoretical investigation of the criteria for achieving slow light in semiconductor QDs. A QD structure in the presence of strain is analyzed with the inclusion of polarization-dependent intersubband dipole selection rules. Experimental methods to synthesize and the measurements of coherent properties in state-of-the-art QDs are surveyed. Slow-light effects in uniform and nonuniform QDs are compared. Finally, optical signal propagation through the semiconductor optical buffer is presented to demonstrate the feasibility for practical applications.

Published in:

Proceedings of the IEEE  (Volume:91 ,  Issue: 11 )