By Topic

Propagation velocity of pulsed streamer discharges in atmospheric air

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
T. Namihira ; Dept. of Electr. & Comput. Eng., Kumamoto Univ., Japan ; Douyan Wang ; S. Katsuki ; R. Hackam
more authors

Pulsed streamer discharges have been extensively used in many applications such as control of NOX and SO2 from exhaust gases, treatment of dioxins, removal of volatile organic compounds, generation of ozone, and laser excitation. An operation with a high energy efficiency is necessary for practical applications. It is very important to know the propagation mechanism of streamer discharges in order to improve the energy efficiency of pulsed discharge systems. In this paper, the emission from pulsed streamer discharges in a coaxial electrode system in air at 0.1 MPa was observed using a high-speed gated intensified charge-coupled display camera. A concentric wire-cylinder electrodes configuration was used. A positive pulsed voltage having a width of about 100 ns was applied to the central electrode. The streamer discharges were initiated at the inner electrode and terminated at the outer electrode. The propagation velocity of the streamer discharges was 1.8-3.3 mm/ns.

Published in:

IEEE Transactions on Plasma Science  (Volume:31 ,  Issue: 5 )