By Topic

Determination of the equilibrium ion sheath in the drifting plasma by numerical Simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tat-Kun Kwok, D. ; Sch. of Phys., Univ. of Sydney, NSW, Australia ; Oates, T.W.H. ; McKenzie, D.R. ; Bilek, Marcela M.M.

A one-dimensional (1-D) particle-in-cell (PIC) numerical method is developed to determine the equilibrium steady-state sheath width established in a drifting plasma. The simulated and measured steady-state sheath widths are in approximate agreement although the measured width is slightly larger than the simulated. The probe is biased to +90 V and this greatly influences the potential structure within the sheath boundary. The simulation shows that the mean-charge state and mean-atomic-mass approach to dealing with multiple ion species with a range of charge states does not accurately predict the position of the equilibrium sheath when the difference between the charge-to-mass ratios of the ion species is large. A more robust approach is to simulate the steady sheath by a 1-D-PIC method that can handle multiple ion species. In experimental situations where the sample stage is finite in size, the assumption that the equilibrium ion sheath expands from a biased plate of infinite extent may be violated. A two-dimensional PIC numerical method expressed in r-z cylindrical coordinates has been developed to investigate the condition where the 1-D assumption becomes inaccurate. The results confirm that the 1-D-PIC method becomes inaccurate when the steady-state sheath width has dimensions comparable with the sample stage diameter.

Published in:

Plasma Science, IEEE Transactions on  (Volume:31 ,  Issue: 5 )