By Topic

Two-dimensional thermal model of a refractory anode in a vacuum arc

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
I. I. Beilis ; Dept. of Interdisciplinary Studies, Tel Aviv Univ., Israel ; A. Nemirovsky ; S. Goldsmith ; R. L. Boxman

A two-dimensional (2-D) thermal model for cylindrical graphite and molybdenum anodes in vacuum arcs is presented. The model includes heat flux from the plasma to anode surface, radiation from surfaces of the whole anode, and temperature-dependent thermophysical coefficients of the anode material. Arcs equipped with 3.2-cm in diameter and 1-3-cm-long anodes, with 175- and 340-A currents, and duration up to 250 s are analyzed. The results of the 2-D calculations indicate that the temperature of the active anode surface is distributed relatively uniformly, and the rate of anode temperature rise is larger for short (1 cm) anodes than for long (3 cm) anodes. Maximum active surface temperature depends weakly on anode length. The rear surface temperature for a 3-cm anode length is lower for graphite anodes (1600 K) than for molybdenum (2100 K) when I=175A. The active surface temperature of both graphite (for 175-340 A) and molybdenum (for 175 A) and shorter (1 cm) anodes varies from 2000 to 2400 K, indicating that the vacuum arc can operate as a hot-refractory anode vacuum arc.

Published in:

IEEE Transactions on Plasma Science  (Volume:31 ,  Issue: 5 )