Cart (Loading....) | Create Account
Close category search window
 

Acceleration of SimSET photon history generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Harrison, R.L. ; Univ. of Washington, Seattle, WA, USA ; Dhavala, S. ; Kumar, P.N. ; Yiping Shao
more authors

SimSET (a Simulation System for Emission Tomography) is widely, used for studying PET and SPECT. As emission tomography simulation has become a more mature field, the scope of the research being performed, and thus the complexity of the simulations required, has grown immensely. Researchers are increasingly interested in clinically realistic simulations, and in some cases need hundreds or thousands of realizations. To meet these needs, we are investigating methods for accelerating SimSE'T. SimSET has always incorporated importance sampling (IS). Early studies showed the use of IS led to efficiencies 10-100 times greater than those achieved using analog (conventional) simulation. However, as the simulation became increasingly realistic the assumptions underlying the IS algorithms were violated. The efficiency improvement fell as low as a factor of two for some simulations. We are addressing this loss of efficiency by updating SimSET's algorithms, code optimization, and by modifying the software to run on multiple processors. We hope, with the new IS, to be able to simulate a 3D PET FDG brain scan (300 million detected events) in 3 hours on a 2 GHz processor. This would be a factor of 20 speedup over the currently, distributed software. To date we achieved a factor of 1.5-3 speedup by changing three algorithms and doing some code Optimization. We have several more algorithm improvements and another round of code optimization planned. We have made significant progress on parallel processing. Prototype code based on the last distributed version of SimSET achieved a speedup very close to the number of processors used. The new software also allows for multiple realizations of the same simulation to be automatically, generated on multiple processors.

Published in:

Nuclear Science Symposium Conference Record, 2002 IEEE  (Volume:3 )

Date of Conference:

10-16 Nov. 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.