By Topic

Iterative tomographic image reconstruction using Fourier-based forward and back-projectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Matej, S. ; Dept. of Radiol., Pennsylvania Univ., Philadelphia, PA, USA ; Fessler, J.A. ; Kazantsev, I.G.

Iterative image reconstruction algorithms play an increasingly important role in modern tomographic systems, especially in emission tomography. With the fast increase of the sizes of the tomographic data, reduction of the computation demands of the reconstruction algorithms is of great importance. Fourier-based forward and back-projection methods have the potential to considerably reduce the computation time in iterative reconstruction. Additional substantial speed-tip of those approaches can be obtained utilizing powerful and cheap off-the-shelf FFT processing hardware. The Fourier reconstruction approaches are based on the relationship between the Fourier transform or the image and Fourier transformation of the parallel-ray projections. The critical two steps are the estimations of the samples of the projection transform, on the central section through the origin of Fourier space, from the samples of the transform of the image, and vice versa for back-projection. Interpolation errors are a limitation of Fourier-based reconstruction methods. We have applied min-max optimized Kaiser-Bessel interpolation within the nonuniform Fast Fourier transform (NUFFT) framework. This approach is particularly well suited to the geometries of PET scanners. Numerical and computer simulation results show that the min-max NUFFT approach provides substantially lower approximation errors in tomographic forward and back-projection than conventional interpolation methods, and that it is a viable candidate for fast iterative image reconstruction.

Published in:

Nuclear Science Symposium Conference Record, 2002 IEEE  (Volume:3 )

Date of Conference:

10-16 Nov. 2002