By Topic

An adaptive parameter estimation of Gaussian signal in the presence of an unknown Gaussian noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Turchin, V.I. ; Inst. of Appl. Phys. of RAS, Nizhny Novgorod, Russia

The parametric estimation technique for a source emitting white Gaussian noise in the presence of white Gaussian noise background with an unknown covariance matrix is considered. Simultaneous estimation of both the source parameters and the unknown covariance matrix of noise background can be conducted when the source moves, i.e. its steering vector varies in time. For this scenario, the maximum likelihood statistic was derived for estimation of the source power and the noise covariance matrix. Simplification of maximum likelihood equations was performed assuming a great number snapshot vectors and low signal-to-noise ratio. The results of stochastic numerical simulation are given in case of a point source moving across the uniform sensor array (it was assumed that the source track lies in near-field zone of sensor array) in the presence of uniform noise background and strong interference. The effectiveness of the adaptive beamformer using the inverse estimate of the covariance matrix of non-uniform noise background was demonstrated.

Published in:

Antenna Theory and Techniques, 2003. 4th International Conference on  (Volume:1 )

Date of Conference:

9-12 Sept. 2003